
17 570684 Ch12.qxd 3/31/04 2:51 PM Page 160

160 Part III: Giving Your Programs the Ability to Run Amok

Table 12-2 if Comparisons and Their Opposites
if Comparison else Statement Executed By This Condition

< >= (Greater than or equal to)

== != (Not equal to)

> <= (Less than or equal to)

<= > (Greater than)

>= < (Less than)

!= == (Is equal to)

� I don’t know about you, but I think that all those symbols in Table 12-2
would certainly make an interesting rug pattern.

� The else keyword is used only with if.

� Both if and else can have more than one statement enclosed in their
curly braces. if’s statements are executed when the comparison is true;
else’s statements are executed when the comparison is false.

� To execute means to run. C programs execute, or run, statements from
the top of the source code (the first line) to the bottom. Each line is
executed one after the other unless statements like if and else are
encountered. In that case, the program executes different statements,
depending on the comparison that if makes.

� When your program doesn’t require an either-or decision, you don’t
have to use else. For example, the TAXES program has an either-or deci
sion. But, suppose that you’re writing a program that displays an error
message when something doesn’t work. In that case, you don’t need
else; if an error doesn’t occur, the program should continue as normal.

� If you’re the speaker of another programming tongue, notice that the C
language has no end-else word in it. This isn’t smelly old Pascal, for
goodness’ sake. The final curly brace signals the end of the else state
ment, just as it does with if.

The strange case of else-if
and even more decisions
The C language is rich with decision making. The if keyword helps if you
need to test for only one condition. True or false, if handles it. And, if it’s
true, a group of statements is executed. Otherwise, it’s skipped over. (After
the if’s group of statements is executed, the program continues as before.)

